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Mean-field analysis of the equilibrium of patterns growing in 
a Laplacian field 

M Marsili 
Dipanimento di Fisica, UniversitS di Roma 'La Sapienza', Ple A Moro. 2. 00185 Roma, 
Italy 

Received 7 May 1991, in final form 23 December 1991 

Abstract. The properties of the  shape of patterns generated by random growth in a 
Laplacian field are investigated using a simple modcl recently introduced. the smoothed 
Laplacian model. The relation between #his model and more c o m p l a  systems such as 
Sa@man-%yior fingers or diffusion-limited aggregates, stands in the recently recognized 
universality of patterns whose evolution is controlied by the Laplace equation, and in an 
analytical approximation for the Laplacian field itself. The smoothed Laplacian model 
ailom to treat analytically the  equilibrium of the structure in the 'smwthed' Lapiacian 
field in a mean-field approximation, Ihe resuits on this model are extended in this 
paper to radial geomelry thus providing theoretical insighl in t h e  dependence of the 
shape on the geometry of boundary conditions in which the process takes place and on 
the parameter that tunes the strength of the Laplacian field in the Same way as the 
paramerer r )  does for the dielectric-breakdown model. This new picture is compared to 
numerical simulation's resulls of DLA and DBM and proves to be COnSiStent with them. 

1. Introduction 

The morphology of structures generated by processes ruled by the Laplace equation 
has attracted much interest in recent years. The close relation between the shape 
of Saffman-Bylor [I] fingers and the geometric propenies of patterns produced by 
diffusion-limited aggregation (DLA) [2] or the dielectric-breakdown model (DBM) [3] 
has often been conjectured [l]. Apart from thc fractal properties of DLA it has been 
recognized recently [4] that the distribution of occupation of the sites of the lattice 
in DLA follows the same profile of SaRman-Tdylor fingers. 

The universality of the shape of patterns generated in a Laplacian field can  be 
interpreted in the following way. The nature of the screening effect of the Laplace 
equation is such that the occurrence of growth in a zone of the structure inhibits 
further growth in that region. In this way the Laplacian field drives the system to an 
asymptotic state in which the various regions of t h e  structure are in equilibrium with 
each other. This perspective in the study of Laplacian growth processes has been 
recently proposed [SI with the introduction of a new model, the smoothed Laplacian 
model, in which this same mechanism of evolution is much more simple than in DLA 
or DBM. 

The connection between this model and the Laplacc equation is based on the 
Beurling equality [6, 71, a result of potential theory which connects the value of the 
electric potential in a fjord-like structure to the shape of the structure itself. Consider 
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3494 M Marsili 

a fjord-like structure along the z-axis, such as that sketched in figure 1, and define 
f(z) as the width of the cavity at z. The Beurling equation states that the solution 
of the Laplace equation along the z-axis decays as 

The Beurling equation in the SUI is used to define the growth probability distri- 
bution in the same way as the Laplace equation is used in the DBM: however only 
the global behaviour of the Laplacian field along the structure is reproduced with 
equation (1). In other words the effect of screening typical of the Laplace equation, 
which acts at all length scales in DLA and DBM (giving rise to a fractal structure) or 
in Saffman-lhylor fingers (producing instabilities of the finger shape to perturbations 
of all wavelengths [l]), is included in the SLM only a t  the largest scale so that the 
resulting cluster is compact. 

Figure 1. Schematic illustration of a Section of a two dimensional fjord SINCIUTC. I n  
the electrostatic analogy, the source of the electric field i s  located at a distant point 
z .  W zo and the s t ~ c t u r e  is supposed to be a conductor. The function f ( z )  i s  the 
width of the rjord at any point 2. The decay of the eleclric potential is given by equation 

(1). 

On the other hand this same definition makes the model analytically soluble in a 
mean-field approximation and allows us to compare the analityical results concerning 
the SLM with the observed behaviour of much more complex systems such as DLA or 
DBM and Saffman-'bylor fingers. The asymptotic shape of SLM's fingers is obtained as 
the solution of an equation which describes the dynamical equilibrium of the structure 

The interest of the model lies in the theoretical description of the dependence of 
the shape of the clusters on the strength of the Laplacian field in which they grow or 
on the g e o m e y  of the boundary conditions in which growth takes place. 

in tiie p w i h  pro'labiiii-y fieid. 

The aim of the present paper is twofold. 
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(1) ?b compare the analytical behaviour of the SLM in strip geometry with nu- 
merical simulations of the DBM with respect to the dependence of the width of the 
clusters on the strength of the Laplacian field (section 2). 

(2) ?b extend the results of the previous paper [SI to radial geometry. The basic 
equation in this case is solved and the results are related to recent numerical findings 
[4], section 3. 
On the one hand we find that the theoretical description of the SLM fits fairly well 

the numerical results on DBM clusters; on the other hand we gain new theoretical 
insight in the behaviour of irreversible growth processes. Some general differences 
between radial and strip geometry will be discussed in the  last section together with 
concluding remarks. 

2. Smoothed Laplacian model in strip geometry 

We briefly review the definition and the mean-field solution of the SLM in strip 
geometly; for a full treatment the interested reader is referred to [SI, before turning 
to the numerical analysis. 

The model is defined on an infinite strip of width L with periodic boundary 
conditions on its sides. The cluster grows along the axis of the strip and its configu- 

where L t ' ( t )  ( L t ) ( t ) )  is the number of units t h e  cluster has grown in the direc- 
tion perpendicular to the axis of the strip toward the right (left) edge in the kth 
row from the tip, see figure 2. The variable k is the distance from the tip and 
L t i o ( t )  = L f L o ( t )  = 0 V t .  For what follows it is more convenient to use the 
variables D k ( t )  = L - L t ) ( t )  - L c ) ( t )  which represent the width of the fjord left 
at time t by the structure at a distance k from the tip. The definition of D,( t )  
reflects the choice of periodic boundary conditions. These are the variables used in 
the definition of the growth probability which rules the evolution. Namely 

ration is defined, at time t ,  by a set of integers { L t ) ( t ) , L k  ( I )  ( t )  : k = 0 , 1 , 2 , . .  .) 

is the probability that growth occurs at time t on the right (left) side of the structure in 
the kthrow. Hencewith probability P k ( t ) ,  D , ( t + l )  = D k ( t ) - l  and D,(t+1) = 
D,(l) V n  # k. With probability Po($)  (which is determined by the normalization 
condition) the cluster grows one unit  along thc axis of the strip, so that in this case 
D,(t+ 1 )  = D k - l ( t )  V k  2 1. 

c is the only parameter of the model and it modulates the strength of the screening 
effect in the same way as the parameter 11 does for DBM [3]. The similarity between 
this screening effect and the one typical of the Laplace equation comes from the 
fact that equation ( 2 )  has the same dcpendence of equation (1) on the shape of the ".-..-...-.. 7.. ..:.. ..._ c . I . - ~ ~  +:--- "A ,.F rio~.n:r:nn 1 1 ~  nn.rrm --L*:-- 

111 " K W  U, u,cV2 C'IYClL1""" at," U, L l l C  Y C I I I I I L I " . I  "L L1.L "DI"1 L-.,, U,* IcIdLLU,,  

between c and the parameter 7 of the DBM should be c = nq. One has however 
to recall that equation (1) reproduces correctly the behaviour of the  Laplacian field 
only in fjord-like structures, while the definition (2) of P k ( t )  assumes the same 
dependence also for the region of the tip of the cluster. 

DL1"LL" IC i .  
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Figure 2. Smoothed laplacian model in strip geometry. The pattern grows from the 
centre line of the strip, in the upper direction with probability Po, and in the lateral 
one, at a distance I;  from the tip, with probability Ph. Periodic boundary conditions are 
applied to the side edges of the strip (dashed vertical lines). 

The mean-field equation for D,( t )  that corresponds to the above evolution rules 
is 

Due to the ergodic property of the system for t - CO as a D , ( t ) / &  - 0 and 
the resulting equation for D ,  in this limit gives the stationary profile of the cluster. 
The physics contained in this equation is just the balance between growth in the two 
main directions, the one parallel to the strip and the one perpendicular to it. Using 
equation (2) for P,(t) and the rescaled variables y = k / L  and d ( k / L )  = D, /L ,  
equation (3) can be solved, with the boundary condition d ( 0 )  = 1, to obtain d ( y )  in 
implicit form 

With respect to the asymptotic width of the structure it is easy to see that for 
y - C O  as d ( y )  -, d, = exp(-?/c). This behaviour allows us to make some 
considerations. Firstly we notice that the limit c + 0 is not analytical and this suggests 
that the same situation could occur also for DBM in the limit 7 --t 0. In the case Of 
DLA, which corresponds to c = r, the relative width of the structure is known to be 
1/2. The corresponding value for the SLM is 1 - d, = 1 - exp(-2/r) = 0.471 . . . 
which is in close agreement Moreover the SLM gives a clear indication Of the 
dependence of this width on the parameter 7) of DBM, it should in fact behave like 
6 K exp(-a/q). This suggestion has been tested performing numerical simulations 
of DBM aggregates in strip geometry. In view of computer limitations it has been 
possible to consider system sizes only up  to L = 32. One hundred clusters were 
grown up to a height I /  = 5 L for 11 values of ?I from 0.5 to 3.0. 
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The main conceptual problem in this analysis concerns the definition of the width 
Of DBM clusters. n o  different definition have been used. The first is that given by 
Arneodo in [4]. The width of the structure is defined as the mid-height width of 
the site occupation probability distribution. The second definition is based on the 
behaviour of the Laplacian field along the structure. The solution of the Laplace 
equation decays exponentially [SI from the tip 

where h is the distance from the tip, with a typical penetration length 6 whose 
meaning is the sue of the channel left empty by the structure. This definition has a 
direct physical meaning if one supposes that the universality of occupation properties 

fact that in all these problems the stationary state is due to the equilibrium situation 
of the growing structure in the Laplacian field. Indeed even if the morphology of 
thc Structure can be very different in the three cases, the behaviour of the Laplacian 
field should be the same, and in particular its behaviour along the structure at the 
largest scale. This is why we expect that the behaviour displayed by the SLM, in which 
this equilibrium situation can be studied analytically, is correct also for other more 
complex systems of Laplacian growth. 

Moreover in the first definition, in order to obtain a meaningful distribution, it 
is necessary to apply reflecting boundary conditions on the side edges of the cell, as 
done in (41. This choice makes the system symmetric with respect to the axis of the 
cell. Periodic boundary conditions instead do not indentify an axis of symmetry so 
that the distribution of occupation turns  out to be flat and the corresponding width 
remains undefined. This does not happen if one defines the width of the clusters 
using the penetration length of the Laplace equation that is well defined also for 
periodic boundary conditions. For the SLM the choice of boundary conditions enters 
in the relation between D,, L r )  and L t ) .  This dcfinition can be modified for the 
case of reflecting boundary conditions but the final result for the shape of the cluster 
is the same. The choice of reflecting boundary conditions, in the end, is irrelevant. 

The fjord width 6 obtained by both methcds was fitted to a functional form of 
the following kind 

ic EL?, VihCG-as. fixgerixg ax4 SaEfma:,--Etj!o: finge:s rece:,:!y p?3p3s4 !ies ix the 

6 = b e x p ( - a / q ) .  ( 6 )  

The values of the coelficients for L = 16 and L = 32 arc given in table 1. In 
Ilgulc J 1,lC 111 IS b'lUWll IU, L. = c)L WIIC IG LIIC Lill",  varr LcprwGl,, LUG pcrlcLrarlurl 
length data while the squares are obtained by the mid-height width of the occupation 
probability profile. 

In particular the plot of the fit shows that for 11 = 1 the width obtained from the 
penetration length is very close to L / 2 ,  whilc the mid-hcight width of the occupation 
distribution differs from L / 2  in a sensible way. I n  ordcr to test the correctness of 
the simulations, 5 clusters were grown with L = G4 and 1) = 1 and the distribution 
of occupation was computed. The width at mid-height is in this case very close to 
L / 2  and the form of the distribution itself coincides with the one found by Arneodo 
et a1 [4] for the same system size. This suggests that the distribution of occupation 
does not give a reliable definition of the cluster width for the system sizes analysed 

c 1 &L. c _  I. ^I c-- r ~~ Iln __.L .LA ^__^_ I."-" _^--^ ""... .I.̂  .."..".-.:-- 
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Table 1. Values of the coefficients of the fit shown in figure 3 for the width of the 
tjiord left by DBM clust~rs. The coellicients refer to the parameters in equation (6). 
The subscript 4 labels the dala obtained from the decay of the solution of the Laplace 
equation along the clusters, while p labels the ones obtained from the profile of the 
occupation distribution. The nonlinearity of the fit makes the evaluation of statistical 
errors problematic. For this reason they are not reported in the table. The last column 
reports far comparison the theoretical value of a that is a,,,cor = 2/a.  

16 16.5 14.6 0.699 0.996 0.637 

32 36.2  27 .6  0.801 0 . 8 3 3  0.673 

5 
I , , , , l l , , , i , , , j l , , l l l l l l l l l ~  

0.5 f 1.5 2 2 .5  3 
Q 

Figure 3. Dependence on Ihc paramcler I )  of the width of the fjord left by DBM 

clusters. grown in a strip of s i x  L = 32.  The error bars rder lo the penetralian length 
data, while the squares are ohtnincd from the occupalion profile. 

and that the relation between this width and the one obtained from the decay of the 
Laplacian field is not trivial. 

The values of the coellicients of the fit disagree from the ones suggested by the 
SLM, a = 2/7r and b = L ,  in a sensible way and are not constant with respect to L .  
This may be a consequence of'the smallness of the system sizes analysed or of the 
approximations contained in the SLM, spccially with respect to the description of the 
L growth process in the tip region. Larger simulations are necessaly to give conclusive 
answers in this respect. The key point is however that the functional dependence of 
the width of the cluster on the strength of the Laplacian field indicated by the SLM 
is reproduced fairly well by DBM clusters for both values of L .  

3. Smoothed Laplacian model in radial geometry 

In the radial case the clusters are dcfined in sector shaped cells (see figure 4) of 
vertex angle 29 and grow along the axis of the cell, from the vertex outwards in the 
radial direction, and from the axis towards the two edges, in the tangential one. Again 
periodic boundaly conditions are applied to the side edges of the cell. 
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At a certain time 1 the distance of the tip of the cluster from the vertex 
is an integer H ( t )  and the configuration can be described by a set of integers 
{L(kP)(t),Ly)(t) : k = 1 , .  .. , H ( t ) )  with L f 2 H ( l ) ( t )  = LfLHct , ( l )  = 0 V t .  These 
variables, as for the linear case, represent the amount of growth at a distance k from 
the vertex. In the radial case however two possible choices are available for these 
variables, growth can occur along the direction perpendicular to the axis of the cell 
or along the are of circumference. The second choice appears to be the most natural 
for this g e o m e q  even if it makes it difficult to define the model on a lattice. This 
will not be necessary in the present paper so that the second definition will be used. 
Note that in the present case the  meaning of the variable IC is different from the one 
it had in the previous section and that the number of values of IC necessary for the 
theoretical description of the process increases in time. 

Defining thevariabie D k ( t )  = z lk-  Lk:) - L f j  in a similar way as in the previous 
section, assuming periodic boundary conditions on the  sides of the cell, at time t 
growth will occur on the kth arc of circumference from the centre with probability 

and the corresponding variable L r ) ( t )  (or L f ) ( t ) )  will be increased by unity, while 
D k ( t )  will decrease by one unit. With probability Po, that is again determined by 
the normalization condition, growth will occur on the tip of the  structure so that 
H(t + 1) = H ( t )  + 1. The mean evolution can be summarized by the following set 
of C m m t i n n c  

H ( t = O ) = O .  1 
The argument that has led to equations (8) is not as rigorous and systematicas that 

which gives the corresponding equations for the linear case [5]. The physical content 
is however the same: the mean-Ceid approximation tor the evoiurion of a structure 
in a stochastic-field whose functional depcndcnce on the shapc of the structure itself 
is that of the Beurling equality. The relevant lcngth scale in the problem is clearly 
H ( t )  and it is useful to introducc the rcscalcd variables d ( r )  and I’ defined as 

These variables indeed contain the information about the shape of the structure 
while N( 1 )  contains the dependence of the size of the structure on time. Indeed it 
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_ _ _ _ _ _ _ -  - - - - -  --._____ _ _ _ _ _ - - - - -  -------_.____--- 

Figure 4. Definition of the SLM in radial geometly. The lengths L r ) ( t ) ,  L y ' ( t )  
and D k ( t )  are measured along the arc of circle at distance k from the origin. Three 
identical fingers are shown in the figure lo represent the choice of periodic boundaly 
conditions. 

can be easily verified that in terms of the function d ( r )  the first of equations (8), 
using equation (7), gives an equation for the mean shape d ( r )  of the cluster that is 
completely independent of the time variable 

The evolution is instead described by the second of equations (8) that in its 
turn depend on the shape of the cluster through the normalization condition. Using 
equation (10) integrated from 0 to 1 on r,  this dependence can be made more explicit 

This equation can be easily solved for H ( 1 ) .  Note only that the shape does not affect 
the functional dependence of H ( 1 )  on t. H ( t )  is indeed proportional to the square 
root of 1 (that is just a consequence of the fact that the cluster is compact and its 
mass-length dimension is 2). The form of d( r )  only affects the prefactor. Let us now 
focus on equation (10) and look for a solution. It is useful to make the following 
change of variables: 
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io has the same meaning of the angle in a polar coordinate system. Equation (10) 
now reads 

The factor et  in the left-hand side can be brought to the other side and then into 
the integral a t  the exponent thus giving 

with the boundary condition p(0) = 4. After taking the derivative of both terms, 
one geis a second-order iioniinear equaiion 

+(O) = 2 I , p(n) = ?9 

where the boundary condition on the derivative comes from equation (14) evaluated 
in F = 0. This equation can be solved with two successive integrations to obtain p(<) 
in implicit form 

{ = - i d  d* 
Jp(() ?! + 21 - c I l l  21 - + + c In 7b 

The solution is shown in figure 5, in terms of the variable [ ( T )  = ( 4 ~  - rp(r))/Z 
that coincides with the rescaled variable relative to L f ) (  t )  and is more closely related 
to the actual shape of the finger, even if onc has to remember that the variable [ ( T )  

is measured on the  arc of circumference. The finger width grows from zero, at 
the tip, to a maximum value. It can be shown that this maximum is obtained for 
Pmax - - 29 exp(-?/c) and that the corresponding value T,,,, moves closer to one 
for lower 4 and c values. Further decreasing r, l ( r )  decreases from the maximum 
to zero approaching a linear behaviour. From equation (16) it is easy to see that 
for E - -a (that is T - 0) p(c) tends to a value po that is the solution of the 
following equation 

2 + 21 - c l n  29 - po + cln po = 0 .  (17) 

The dependence of po on 29 and c can be undcrstood with the help of the construction 
shown in figure 6. The curve 1) = z - c I n  z has a minimum for z = c. For a given 
value of 4, 'po is given by the value of I in which the line y = 2++-c ln  ?1 intersect., 
the curve y = z - cln 2. Since po < 0 only the intersection on the left has to be 
considered. This means that po is always smaller than c and it increases for 29 < c 
and decreases for t9 > c. This behaviour is confirmed by a crude estimation of po, 
which can he easily obtained from equation (17) 
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The physical meaning of the angle vu is the vertex angle of the cone that will be left 
asymptotically unoccupied by the structure. The quantity X = (19 - ipo)/19 instead 
is the fraction of the arc of circumference occupied asymptotically by the cluster. 
This quantity has recently been calculated performing numerical simulation of DLA 
in sector shaped cells [4] that has revealed a linear dependence of X on 21, equation 
1 of [4]. The corresponding behaviour in the SLM is somehow more complex and can 
be expressed, using ~. equation (17), in implicit form 

2 + c l n ( 1  - A )  
X 

1 9 = -  

-i 0.2 A 
O-. 0.0 v,, , , , , , , , , , , , , , ,L! , , 

0 2  0 4  0.6 0.8 0 2  0 4  

Figure 5. 
which corresponds lo L i ’ ( t ) ,  in the case c = li and B = n/2. 

Solution of equation (14) for the rescaled variable ( ( 7 )  = v(B - $o(r))/Z 

4 

Flgure 6. Graphic solution of equalion (IS)  for $oo as a function of c and B. 
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Note first of all that for 9 - 0, X tends to the value 1 - exp(-2/c) which is 
consistent both with the result of the SI.M in strip geometly and with the numerical 
result of Arneodo et 01 [4] (i.e. X ( 9  = 0)  = 0.5) in the case of DLA (c = T). 
Moreover the behaviour of equation (19) for c = x in the range 0 < 9 < ~ / 2 ,  is 
almost indistinguishable form a straight line (see figure 7) so that this behaviour is 
consistent with the numerical result [4]. However the coelficient of a linear fit of 
equation (19) for c = T (that, evaluating dX/dO in 9 = 0, turns out to be approxi- 
matively 1.56 x rad-’) is smaller than one half of the one found numerically 
by Arneodo et al ((3.4 + 0.2) x rad-’). The reason of this discrepancy lies 
in the fact that the description provided by the SLM of the growth process in the tip 
region is very different from that of DLA. The tip of SLM clusters is a sharp cone 
whose vertex angle is ~ / 2  for all 9 and c valuest, while the tip’s shape of Saffman- 
iayior fingers is known to be smooth. Tie situation cieariy gets worse for iarger 9 
values and this is consistent with a linear divergence of A(  9) in the two cases. An 
interesting suggestion of equation (19) is that the linear behaviour of X on 9 is not 
exact. Greater deviation from a linear behaviour can be observed in equation (19) for 
small c values, so that this point could be checked performing numerical simulations 
on DBM with small values of 7). 

”. 

9 

Figure 1. Plot of equation (19) for A( 8) in the case c = il. For larger values of 8 the 
deviation from a linear behaviour beconies more pronounced and X lends asymptolically 
l o  1. However the physical range of B increases only l o  2 i l .  

Finally it is interesting to investigate the behaviour of the sLM in radial geometly 
near the vertex of the cell. Firstly we analyse the way in which the solution d( r )  
approaches the linear behaviour for r << 1 .  Using the variable E ( T )  = q( r )  - ’pa, 

one finds from equation (16) an expression for dr /d f  

that to linear order in e,  gives after few passages 

d ( r )  = ‘(pa + E ( ? - ) )  1 q,r + A , V ~ / ~ O .  

t This is due l o  the facl that the baundaty condition on Ihe derivative d(r) in 7 = 1 (or of +(<) in 
= 0) does not depend an c and il. 
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Considering the dependence of po on c, equation (la), we conclude that the conver- 
gence to a linear behaviour is faster for lower c values. The ratio c / p O  enten also 
in the power law behaviour of the  growth probability near the vertex. It can he easily 
shown, using equation (21), that for for k << H ( 1 )  

and, considering that Pn( l )  = l / H ( t )  and H ( 1 )  cx &, we get 

(23) pk(t) p * - K ~ / v o + ~ P l ,  

The last equation gives the behaviour of the probability at a distance IC in the limit 
1 + 00 for any IC. The fact that 21 is always smaller than c makes this probability decay 
faster then 1 / 1  and this is a necessary condition for the freezing of the structuret. 
The ratio c /pn  then is relevant because it  makes this freezing more, or less, rapid in 
time. 

These results show that the asymptotic part of the structure extends over a fraction 
of the total radius that is larger for smaller c values and that the freezing process 
is faster the smaller c is. The same situation is likely to occur in DBM, and this is 
somewhat surprising if one thinks that in this limit ( c  -+ 0, q + 0) the strength of 
the Laplacian screening effect decreases. 

In summary the analysis of the SLM in radial geometry displays a behaviour much 
more complex than the one obtained in strip gcomctry. This is primairily due to the 
inclusion of another external parameter, the vcrtcx anglc 21 of the cell. Moreover 
the same geometry of the  problem makes space and time variables dependent. Intro- 
ducing opportunely rescaled variables however the problem of the time evolution of 
the cluster size and of his geometric shape can he decoupled and solved. Interesting 
correspondences can he found with recent numcrical analysis on DLA (41. Moreover 
the SLM provides further suggestions about the theoretical behaviour of Laplacian 
growth processes. It is howcver necessary to remind that the theoretical analysis for 
the radial case of the SLM is much less systematic and rigorous than that of the linear 
case [5].  In particular the validity of the mean-field approximation in radial geometry 
has not been proved so far with the study of fluctuations and of the dynamical stability 
of the mean-field solution. 

4. Discussion 

In the previous sections more attention has been focused on the relation between 
the analytical results on the SLM and the bchaviour of DLA and DBM, than on the 
results themselves. This attitude reflects the main motivation for the introduction of 
the model, that is to providc theoretical information on the behaviour of such very 
complex models, in a simple way. It is however necessary to recall that the above- 
mentioned relation is far from being rigorous and this is the reason why the relevance 
of the description provided by the SLM for the behaviour of the DBM lies more in the 
functional dependence on the various parameters than  on their numerical VaheS. 

t I n  view of the B o d  Cantelli lemma [U] this condition cnsures that only a finite number of growth 
events occur at a distance k from the verlex. 
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The inadequacy of numerical values is mainly due to the fact that the description 
of thegrowth process in the tip region is inappropriate for Laplacian growth processes. 
The definition of the model given in the previous sections is the simplest one and 
can be easily improved to take into account of this problem. 

On the other hand the scenario outlined for the SLM in this paper allows us to 
make a comparison between the radial and the strip geometries, with respect to the 

specific case of the SLM. The main difference between the two geometries of boundary 
conditions can be expressed, loosely speaking, in terms of volume of phase space. In 
strip geometry the volume of phase space is constant in time while in the radial case 
the phase space gets progressively larger. This is evidcnt from the scaling form of the 
shape of the cluster which involves the size of the structure that, in the linear case, 
is independent of time, while in the radial one it increases with time. 

The asymptotic state of the system in strip geometry is that of an ergodic stationary 
process that possesses stability properties and well behaved fluctuations. In radial 
geometry the process is not stationary and the asymptotic properties come as a result 
of a problem of ‘equilibrium’ which is intrinsically irreversible. It is then likely that 
the system, in this geometry, is much more complex and sensitive to the details of 
the model. 

The behaviour of the DLA is an exampie of this situation. i n  radial geometly (that 
would coincide with a sector shaped cell of angle 21 = 2rr) the indications of numerical 
simulations lead to a rather unclear picture. The system, that is initially isotropic, 
undergoes a transition to a structure characterized by fcw main arms. The mechanism 
of selection of the number of arms is influenced drastically by the geometq of the 
underlying lattice [lo]. In its turn, according to an analytical result due to Ball [ll], 
the number of arms depends on the mass-lengrh dimension of the cluster. Moreover 
it seems that, for very large sizes, the mass-lcngth dimension of the cluster decreases 
and the system becomes deterministic [lo]. 

In strip geometly the growth direction is uniquely defined and the geometry of the 
lattice does not influence the asymptotic properties. After the early stages of growth, 
in which the scaling properties of the structure are not totally understood [12], the 
system enters a steady state of growth in which it can be described as a Markovian 
process. 

The crucial point is that the ‘thermodynamic’ limit L - 00 is well defined for 
such a stable state and the system possesses well defined properties in this limit. In 
the case of the SLM these properties concern the shape of the structure, in the sense 
that, in strip geometly, typical configurations follow the mean-field profile, equation 
(4), and fluctuations vanish in this limit. What arc the analogous properties in the 
case of DLA and DBM? Are typical configurations in the limit L + M characterized 
by a well defined value of the fractal dimension? What is the limiting profile of the 
site occupation distribution? The stationaly nature of the process in strip geometry 
allows us to address such unambiguous questions, while the  same problems in radial 
geometry require a deeper understanding of thc nature of the asymptotic state. 

theoretiu! description of the growth proce.ss, whme va!ir?ity IS more. genera! than the 
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